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Abstract

Stedi employees must be able to prove that customer
data can never be accessed by Stedi-affiliated accounts
or identities. Our in-house automated reasoning sys-
tem, built on top of Microsoft’s Z3 Satisfiability Mod-
ulo Theory (SMT) solver, encodes the semantics of the
Amazon Web Services (AWS) Identity Access Man-
agement (IAM) Policy language, allowing it to reason
about role-based access control. This system helps to
provide assurance that customer data can only ever be
accessed by its owner.
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1 Introduction

Stedi provides customers with software building blocks
that can store and process data. Customers handling
sensitive data would like to have definitive assurances
about how their data can be accessed. Stedi would
like to verify that its terms of service are upheld in
our access controls. Specifically, we would like to show
that customer data can only ever be accessed by the
customer that owns the data, and never by an em-
ployee of Stedi. As Stedi Cloud is built on Amazon
Web Services, the access controls are implemented us-
ing the AWS IAM Policy language. We can boil this
down to the question: can a principal P perform ac-
tion A on a given resource R? For Stedi, the princi-
pals are Stedi-affiliated identities, the actions are read-
/write permissions, and the resources are customer-
affiliated resources (Buckets, Functions, DynamoDB
Tables, Logs & Roles).

1.1 Related work

Backes et al.[1] was our primary reference point, given
that our problem statement concerns a subset of the
IAM Policy universe. Consequently, we have adopted
most of the encodings used in [1], and extended some of
these encodings for our purposes e.g. Roles. Further-
more, [1] makes substantial contributions for encoding
strings, as IAM Policies allow for both wildcard and
regex expressions. However, Stedi does not use regex
expressions in its IAM Policies, and we have taken a
subtly different approach to encoding wildcards.

In contrast to [1], most of our paper’s contributions
derive from Role encodings and classifications of Roles
depending on their permissions. In particular, we call
the relationship between a Role R and a set of per-
missions P the permission structure of R and P. Our
analyzer is able to reason about the permission struc-
tures of different varieties of Roles and permissions.

2 Approach

2.1 IAM overview

The AWS IAM Policy language, shown in Figure 1, is
built around an object called a Statement. A State-
ment is a tuple that consists of a Principal, Action,
Resource, Effect, and Condition, with Conditions an
optional element. The Effect determines if the permis-
sion is to allow or deny, and the Principal, Action, and
Resource determine who is allowed (or denied) to do
which actions on what resources. Conditions further
limit the scope of permissions by adding constraints
surrounding the request context.1 If Statements are
the building blocks of the IAM Policy language, then
Policies are its buildings; Policies are simply bundles of
statements. Even further, Roles are bundles of Policies
- though Roles do not have the same malleability that
Policies do. Roles are a sub-class of Resources in which
an identity can assume a Role, and hence be permitted

∗Contact: hwjeon@uchicago.edu, olaf@stedi.com, pavel.tcholakov@stedi.com
1For our purposes, Conditions are outside of the scope of this paper, and Stedi plans to tackle these in due time.
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to execute any permissions that the Role is allowed to
perform.

IAM policies contain a sliding scale of permissions.
Any permissions not directly written in the policy are
implicitly denied. These implicit deny’s are overwrit-
ten by policies directly allowed in the policy, otherwise
known as explicit allows. Explicit allows are then over-
written by policies directly denied in the policy, simi-
larly known as explicit deny’s. This is to say that, in
the IAM world, if action s3:GetObject is allowed and
denied on all S3 Buckets, then the action is ultimately
denied.

Taking a look at the example at Listing 1, we
see that Principals that match with principal1 and
principal2 are allowed to do any Action starting with
action on any Resource starting with resource. How-
ever, no Principal is allowed to do Action action2 on
Resource resource2. Because explicit allows are always
overwritten by explicit deny’s, this means that Princi-
pals principal1 and principal2 are also not allowed
to do action2 on resource2. Every other permission
not denoted in this example policy is implicitly de-
nied. For example, no Principal is allowed to do Action
someAction on Resource someResource.

Listing 1: Example Policy with two Statements
[

{
Action: action*,
Resource: resource*,
Principal: {

AWS: principal1 ,
Federated: principal2

},
Effect: Allow

},
{

Action: action2 ,
Resource: resource2 ,
Principal: *,
Effect: Deny

}
]

2.2 Logical encoding

To reason about IAM security policies, Stedi uses an
SMT solver called Z3. An SMT solver is an algorithm
that determines the satisfiability of a propositional for-
mula. For example, an SMT solver can take the fol-
lowing formula as input: φ = (x1 ∨ x2) ∧ ¬(x2). A
satisfying assignment for this example is x1 = TRUE
and x2 = FALSE, since this assignment yields (TRUE ∨
FALSE) ∧ ¬(FALSE) = TRUE ∧ TRUE = TRUE.

We define a few terms for precision. We say that
a propositional formula φ is satisfiable if there exists
an assignment of its variables such that φ evaluates to
TRUE. Secondly, φ is called a contradiction if it is not
satisfiable. Lastly, φ is valid if it evaluates to TRUE
under all assignments of its variables. For example,

(x1 ∨ x2) ∧ ¬(x2) is satisfiable, x1 ∧ ¬(x1) is a contra-
diction, and ¬(x1∧¬(x1)) is valid. Note that a formula
is a contradiction if and only if its negation is valid. We
use this fact liberally, as it is not enough to know that
a formula is satisfiable, and we need absolute assurance
that our policies function as we intend them to.

In words, we want to show that the for-
mula [Stedi accounts can access customer data.]
is a contradiction, or, equivalently, that
[NOT(Stedi accounts can access customer data)] is
valid. Unfortunately, Z3 cannot reason about formulas
written in English, so we must encode the semantics of
the IAM Policy language. Figure 1 shows the IAM Pol-
icy grammar and the corresponding encodings that we
have used. Notice that Roles are encoded as large Poli-
cies; for each managed/inline Policy associated with
the Role, we simply extract the allowed Statements
and denied Statements, then put them all together.

There are two formulas that form the core of our
automated reasoning system. Suppose we have two
permissions called p1 and p2. The first formula is
¬(p1 =⇒ p2), which we call the allowed for-
mula. It asks if p1 is less permissive than p2 i.e. if
p2 is allowed to do anything that p1 is allowed to
do. From here on, we refer to the allowed formula
¬(p1 =⇒ p2) with the notation allowed(p1, p2). Ac-
cordingly, allowed(p1, p2) is TRUE if ¬(p1 =⇒ p2)
is unsatisfiable (i.e. a contradiction), and FALSE oth-
erwise. We note a few observations. Firstly, it is
largely the case that allowed(p1, p2) returns TRUE
while allowed(p2, p1) returns FALSE, since one of p1
or p2 is likely to be more permissive than the other.
Secondly, the allowed formula and its reverse can both
be TRUE; this occurs if both policies entail exactly the
same set of actions on the same set of resources, allowed
by the same set of principals. Thirdly, the allowed for-
mula and its reverse can also both be FALSE; this occurs
if the set of permissions of p1 intersects partially (i.e.
is not a subset or superset) with the set of permissions
of p2.

In our formulation of “allowedness”, p2 not being al-
lowed to do the actions of p1 is wildly different from p2
being prohibited from doing the actions of p1. For in-
stance, p2 may be allowed to execute a strict subset of
the permissions allowed by p1; allowed(p1, p2) would
return FALSE since p2 does not have all the permissions
allowed by p1. However, it is also not the case that p2
is prohibited from executing the permissions allowed
by p1. This problem calls for a formula that checks for
prohibition.

The second formula is p1∧p2, which we call the pro-
hibitive formula. It expresses if p2 is prohibited from
doing anything in p1. Similarly, for the second for-
mula, we check that p1 ∧ p2 is a contradiction if we
are interested in proving that p2 is prohibited from
doing actions allowed by p1 under all circumstances.
From here on, we refer to the prohibitive formula as
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Figure 1: IAM Policy Grammar and its corresponding encoding

prohibited(p1, p2). The function returns TRUE if the
two policies are incompatible, and FALSE otherwise.
Notice that this formula is symmetric: p1∧p2 is equiv-
alent to p2∧p1. This is to say that p1∧p2 is equivalent
to putting together p1 and p2 into one large policy,
and checking if there are any “collisions” between the
statements.

Even with the prohibitive formula, we have
not resolved the aforementioned problem of “not-
allowed” and “prohibited”. In fact, it is possible for
allowed(p1, p2) and prohibited(p1, p2) to both re-
turn FALSE or both return TRUE. In this case, we call
the permission structure of p1 and p2 inconclusive.
Inconclusive policies where both allowed(p1, p2) and
prohibited(p1, p2) return FALSE typically arise when
the intersection between the two policies are partial i.e.
one policy is neither a subset/superset nor completely
separated from the other policy. On the other hand,
both typically return TRUE in situations where “noth-
ing” or “everything” is allowed. We expand on this
particularity in the Examples subsection below.

In total, based on the allowed and prohibited
formulas, we classify the permission structure of p1
and p2 into three categories: allowed, prohibited,
and inconclusive. Representing (allowed(p1, p2),
prohibited(p1, p2) as a tuple, the permission struc-
ture is allowed, prohibited, inconclusive if the tuple is
(TRUE, FALSE), (FALSE, TRUE), (TRUE, TRUE) / (FALSE,
FALSE), respectively. The inquisitive reader may ask
why the prohibited formula is even necessary, given
that it did not solve the problem of “not-allowed” and
“prohibited”. Without the prohibited formula, we gain
zero knowledge of whether the permission structure is
prohibited or inconclusive. However, with the prohib-
ited formula, we get further confidence of the correct
permission structure.

At Stedi, the only identities that we use are Roles.
This presents a challenging problem - a Stedi employee
could assume a Role within a Stedi-affiliated account,
then assume another Role within another account, then

somehow end up assuming a Role inside a customer
account that has read and write access to customer
data. In order to circumvent this “graph search”, Stedi
replicates organization-level IAM policies to the cus-
tomer local account. As such, we need only inter-
pret customer-level IAM policies and check which Roles
within the customer account have an “allowed” permis-
sion structure with respect to read/write permission
policies. If we encounter any unexpected Roles (i.e.
non-customer Roles) that have an “allowed” permission
structure, then we will have identified a security risk.
Roles that have an “inconclusive” permission structure
are candidates for further investigation, while “prohib-
ited” Roles are definitively proven to be denied ac-
cess. Our automated reasoning system hence evaluates
the customer local-level policies, and uses the resulting
classification of Roles by their permission structures to
further inform our IAM policy writing.

2.3 String encoding

The IAM Policy language makes rich use of wildcards
and regular expressions. For wildcards, [1] uses a com-
bination of prefix, suffix, and match operators. Be-
cause we only use wildcard expressions in our permis-
sions, we take a simpler approach. The prefix-suffix
approach was considered, but it was found to be too
narrow in scope. For example, encoding prefix* or
*suffix is quite simple; one need only check that the
string in question has prefix and suffix as a prefix
and suffix, respectively. However, for expressions with
multiple wildcards, the matching becomes more com-
plex. For example, using only prefix, suffix, and match
operators on s*s*s*s may call ss a match, which is
clearly incorrect. The problem arises from overlaps,
since any overlaps between adjacent portions of the ex-
pression are treated as matches. Instead of having to
exclude overlapped matches from the search space, we
have opted for a simpler approach.

The Python API for Z3 provides several tools
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to encode the wildcard expression; we utilize
Full(ReSort(StringSort)) for its representation.
(An alternative encoding was considered, namely
Star(Range(chr(0), chr(127)). However, this en-
coding performs magnitudes worse than the en-
coding written above.) We then construct regular
expressions by concatenating our wildcard expres-
sion with other patterns. For example, suppose
we wish to encode s3:*. This phrase is encoded
as InRe(Concat("s3:", Full(ReSort(StringSort)))),
where InRe is a regex constructor. Our method has the
advantage of being simple to encode, while still being
rigorous in pattern matching. However, this approach
has performance disadvantages, as will be expanded
on in the Evaluation section.

2.4 Examples

Listing 2: Straightforward policies
policy1 = {

Action: s3:GetObject ,
Resource: *,
Effect: Allow

}
policy2 = {

Action: [s3:*, log:*],
Resource: *,
Effect: Allow

}
policy3 = {

Action: [s3:GetObject , s3:PutObject],
Resource: *,
Effect: Deny

}

See Listing 2 for three straightforward policies.
Clearly, policy2 can do anything that policy1 can do,
and policy2 is not prohibited from doing anything in
policy1. We then expect allowed(policy1, policy2)
to return TRUE and prohibited(policy1, policy2 to
return FALSE. For the opposite case, policy3 can-
not do what policy1 is allowed to do. We then ex-
pect allowed(policy1, policy3) to return FALSE and
prohibited(policy1, policy3) to return TRUE.

Listing 3: Implicit deny, explicit allow, explicit deny
policy1 = [

{
Action: action1 ,
Resource: resource1 ,
Effect: Allow

},
{

Action: action1 ,
Resource: resource1 ,
Effect: Deny

},
{

Action: action2 ,
Resource: resource2 ,
Effect: Allow

}
]
policy2 = {

Action: action1 ,
Resource: resource1 ,
Effect: Allow

}
policy3 = {

Action: action2 ,
Resource: resource2 ,
Effect: Allow

}
policy3 = {

Action: action3 ,
Resource: resource3 ,
Effect: Allow

}

See Listing 3 for examples of implicit deny, explicit
allow, and explicit deny. Observe that policy1 allows
only Action action2 on Resource resource2, and denies
every other action-resource combination because of im-
plicit deny’s and explicit deny’s. Accordingly, we then
expect:

allowed(policy1, policy2) = FALSE

prohibited(policy1, policy2) = TRUE

allowed(policy1, policy3) = TRUE

prohibited(policy1, policy3) = FALSE

allowed(policy1, policy4) = FALSE

prohibited(policy1, policy4) = TRUE

See Listing 4 for an example of two policies that
return TRUE for both allowed and prohibited. The
first policy, policy1, does not allow anything; its set
of permissions is the empty set. The second policy,
policy2, allows everything; its set of permissions is
the complement of the empty set. Clearly, policy2 is
allowed to do nothing, so allowed(policy1, policy2)
return TRUE. There is also no contradiction in saying
that policy2 is prohibited from doing nothing; indeed,
prohibited(policy1, policy2) returns TRUE accord-
ingly. However, it is peculiar that allowed(policy1,
policy3) and prohibited(policy1, policy3) both re-
turn TRUE. We do not expect prohibited(policy1,
policy3) to return TRUE, since clearly policy3 is pro-
hibited from doing some Action on some Resource e.g.
action2 on resource2. Nonetheless, because the pro-
hibitive formula essentially combines its two arguments
into one large policy, combining policy1 and policy3
clearly create a formula that cannot be satisfied.

Listing 4: Both allowed and prohibited
policy1 = {

Action: *,
Resource: *,
Effect: Deny

}
policy2 = {

Action: *,
Resource: *,
Effect: Allow

}
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policy3 = {
Action: action1 ,
Resource: resource1 ,
Effect: Allow

}

Listing 4 also has an example of two policies
that return FALSE for both allowed and prohibited.
Notice that policy3 is not allowed to do every-
thing that policy2 can do, but it is allowed to do
some subset of policy2’s permissions. This “par-
tial overlap” in permission spaces means that both
allowed(policy2, policy3) and prohibited(policy2,
policy3) return FALSE.

3 Evaluation

Our classification of roles by their permission struc-
tures have allowed us to make effective changes to our
IAM policies. In particular, the inconclusive classifica-
tion has led to the most improvements. When testing
multiple Actions and Resources on Roles, most Roles
do not fall neatly into the “allowed” and “prohibited”
categories. Therefore, the inconclusive category allows
us to make further adjustments to our policies, so that
we get further assurance that our policies function as
intended. For instance, we were interested in test-
ing if any non-customer Roles are allowed to do Ac-
tions s3:GetObject and s3:PutObject on any Resource.
The exact policy can be seen in Listing 5. We ex-
pected to see three “allowed” Roles, zero “inconclusive”
Roles, and the rest with “prohibited” permission struc-
tures. Running the analyzer, the “allowed” Roles were
returned as expected. However, there was an unex-
pected “inconclusive” Role; this Role was permitted to
do s3:Get* on any Resource, but implicitly denied from
doing s3:PutObject. Therefore, the analyzer correctly
determined that there was insufficient evidence to make
a definitive decision.

Listing 5: Tested policy for s3:GetObject and
s3:PutObject

{
Action: [s3:GetObject , s3:PutObject],
Resource: *,
Effect: Allow

}

As far as performance is concerned, the analyzer
unfortunately leaves much left to be desired. In par-
ticular, the number of wildcards make a large impact
on the analyzer’s run-time - this is to be expected
because every wildcard massively expands the search
space. Fortunately, for our purposes, we do not expect
to encounter more than four wildcards.

3.1 Statistics

For the purposes of collecting performance statistics on
our analyzer, we created a IAM policy generator that

generates IAM policies of different lengths and com-
plexities. To control the complexity, we parametrize
different components of the IAM Policy grammar. As
seen, every Policy is a series of Statements, and every
Statement contains an Effect and three similarly de-
fined blocks (Action, Resource, and Principal blocks,
which we call ARP blocks). Each ARP block contains
a series of strings. Therefore, we define three parame-
ters for the generator: the number of statements within
each policy, the number of strings within each ARP
block, and the number of characters within each string.
Throughout this section, we represent these parameters
as a tuple: (numStatements, numStrings, stringLength).
For example, if we set our parameters to be (1, 1, 5),
then the output consists of policies with one statement
and one string of length 5 within each of the ARP
blocks.

Using randomly selected parameter values, we veri-
fied one thousand policies of varying lengths and com-
plexities. Only the time it takes to run allowed() for
each policy was measured (i.e. no reading time, no
parsing time, etc). The top figure of Figure 2 shows
the aggregate verification times for all trials. The bot-
tom figure shows the aggregate verification times for
trials under 264 milliseconds. Table 1 shows descrip-
tive statistics - notice that 90% of cases are verified in
less than 264 milliseconds. However, even in just one
thousand trials, there are cases that take more than 10
seconds to verify, and we have encountered cases that
take a minute or more.

To further investigate how string lengths affect ver-
ification times, we generated one hundred policies -
each containing one statement with ARP blocks hous-
ing a wildcard-less string of length n, where n ∈
{10, 20, · · · , 500} (i.e. parameters (1, 1, n)). The re-
sults of running allowed() on these policies can be seen
in Figure 3. As string length increases, the variance on
verification times increases also, but the distribution
is not smooth; several gaps can be seen, but all the
distinct "bands" appear to grow at similar rates.

Furthermore, we studied how the number of state-
ments within a policy affect verification times. Here,
one hundred policies were generated, with each policy
containing n ∈ {10, 20, · · · , 200} statements with ARP
blocks housing a wildcard-less string of length 10 (i.e.
(n, 1, 10)) . The benchmarking results can be seen in
Figure 4. As the number of statements increases, the
verification time increases as expected; given how our
analyzer constructs propositional formulae, the num-
ber of components in the formula is a direct function
of how many statements there are.

Finally, in order to examine the effect of wildcards,
we added a wildcard parameter to the generator. Three
hundred policies with generator parameters (1, 5, 10)
were created; zero, one, or two wildcard expressions
were then randomly spliced into the strings, such that
there would be one hundred policies each that contain
zero, one, or two wildcards. Again, as can be seen in
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Figure 5, the results are as expected - as the number
of wildcards grow, the variance on verification times
increases since the search space dramatically expands.

4 Conclusion

In this paper, we have introduced how Stedi encodes
the IAM Policy language, and how these encodings are
placed into propositional formulas to reveal gaps in se-
curity. Because of Stedi’s exclusive use of Roles (as op-
posed to Users or other identity types), we have taken
a Role-first approach, and investigated the different de-
grees to which Roles can be permissive. Furthermore,
because we replicate organization-level IAM policies to
the customer account-local level, Stedi customers can
be assured that their data cannot be accessed by any
Roles or identities other than themselves.

There are a number of improvements and develop-
ments that can be made. Firstly, we wish for more in-
formation regarding inconclusiveness. Currently, when
a Role is determined to be inconclusive, no further in-

formation is provided. We would like to know which
sections of the Role’s policies induce the inconclusive-
ness; this would aid Stedi employees in creating robust
policies without having to resort to a guess-and-check
workflow. Secondly, we wish to bring resource-based
policies into the domain; our analyzer can reason only
about identity-based policies. However, a resource can
be shared with identities outside of the containing ac-
count, and, as such, this requires our analyzer to reason
about resources also. Fortunately, we expect no diffi-
culties incorporating resource-based reasoning on the
basis of our existing work. Lastly, as aforementioned
in the Evaluation section, optimizing the analyzer (es-
pecially around wildcards) will conserve time greatly
as the analyzer’s usage becomes more frequent.
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A Figures

Statistic Details (ms)
Minimum 40.131
Maximum 12643.917

Mean 207.105
Standard deviation 744.177

50th percentile 57.648
90th percentile 264.873

Table 1: Descriptive statistics for verification times

Figure 2: Verification times from 1,000 randomly generated policies

Figure 3: Verification times for policies with varying string lengths
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Figure 4: Verification times for policies with varying numbers of statements

Figure 5: Violinplot of verification times with 0, 1, or 2 wildcard expressions
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